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Abstract—We experimentally demonstrate an all-optical 

rectified linear unit (ReLU) activation function for 

neuromorphic photonics applications enabled by optical 

frequency coding of signals. Furthermore, a comparison is 

made with an electro-optic approach building on a directly 

modulated laser.  
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1. Introduction 

Photonic neural networks stand a chance to shift the 

computation paradigm to an analog optical processing 

method, driven by the inadequacy of digital electronic 

computers in fulfilling bandwidth demand and power 

consumption of an over-scaled data generation [1]. An 

analog processing with optics requires a set of 

operations that is equivalent to components in the 

neural network (NN) architecture, consisting of a linear 

weighted sum and a nonlinear activation function. By 

mapping these human brain functions to the optical 

realm, a multiply-accumulate operation (MAC) can be 

accomplished at a fast GHz signal rate, owing to the 

high parallelism and vast bandwidth of photonic 

technologies. Photonics-based weighting has been 

earlier demonstrated through ring-based modulators [2], 

interferometers [3], and SOA-REAM synaptic receptors 

[4]. Another important subsequent process in a NN is to 

activate the weighted sum via a nonlinear function such 

as sigmoid, hyperbolic tangent, or a rectified linear unit 

(ReLU). However, realizing an activation function in 

photonics is not straightforward. A hybrid system with 

all-optical neural network has been introduced, except 

for the nonlinearity, which has been performed 

electronically [5]. Several attempts to construct a 

nonlinear activation function in optical domain have 

been carried out using a saturable absorber [6], a 

graphene excitable laser [7] and an electro-absorption 

modulator (EAM) [8].  
In this work, we experimentally demonstrate an 

implementation of an all-optical ReLU operation on 
synaptic signals represented in optical frequency coding. 
It is generated by a chirp-managed directly modulated 
laser (CML), in combination with an optical interleaver 
(IL) filter as the activation function. As a benchmark 
digital neural network (DNN), we use the well-known 
problem of Iris flower classification. We achieve a 
lower error with CML+IL and avoid an electro-optic 

conversion to perform the ReLU. 

2. ReLU Function Based on Frequency Coding 
In our DNN, we use a multilayer perceptron (MLP) 

scheme with the architecture shown in Fig. 1(a). Each 
neuron output is determined by the weighted sum Σ of 
inputs from the prior layer and biased by b, then 
processed by activation function f. Two ReLU schemes 
have been investigated, as introduced in Fig. 1(b): (i) 
neural inputs modulated in their optical frequency ν, 
whose weighted sum ΣFM is processed by an all-optical 
activation function T(ν) contributed by an optical 
bandpass filter (BPF) with a linear filter slope, and (ii) 
an electro-optic ReLU constituted by the light-current 
(L-I) characteristic of a DML with threshold current Ith. 
Through biasing either the wavelength λ of the FM 
inputs in the first scheme or the bias current of the RF 
signal that constitutes Σel in the second scheme, we 
perform a photonic activation operation (Fig. 1(c)). 

3. Experimental Evaluation 
The all-optical ReLU is evaluated in the context of 

the Iris flower classification problem, where the MLP 
network has been trained offline. Fig. 2(a) shows the 
experimental setup to evaluate the performance of 
optical ReLU activation function. In our work, we send 
the weighted sum data Σ(t) (without being processed by 
the activation function f ) of the node 0 at the 2nd layer of 
the DNN implementation (Fig. 1(a); red) through an 
arbitrary waveform generator (AWG) to the optically 
implemented activation function, using a data rate of 1 
Gb/s. The AWG drives a CML at 1600.6 nm whose 
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Fig. 1. Architecture of MLP-based neural network. (b) Schematic of 

CML+BPF (i) and DML (ii) as ReLU activation function and (c) the 

corresponding all-optical and electro-optical activation function.  



internal chirp filter has been tuned to a neutral position 
to avoid frequency-to-intensity conversion. The CML 
therefore generates the frequency modulated weighted 
sum ΣFM(t). The inset in Fig. 2(a) shows the output of 
the CML with its negligible intensity extinction ratio of 
0.3 dB. The weighted sum is subsequently processed by 
an optical 25/50 GHz IL. Fig. 2(b) shows the CML 
spectra before (red) and after the IL (green) when the 
FM signal is aligned to the slope of the IL, together with 
the transfer function of the IL (blue). The emitted signal 
is then detected by PIN receiver and digitized through a 
real-time oscilloscope to feed the optically performed f 
(Σel(t)) back to the DNN. For comparison, we also use a 
DML at 1554 nm with Ith = 6.5 mA. We use two 
different current biases: a sub-threshold bias of 6.2 mA, 
leading to rectification of the RF signal driving the laser, 
and a bias of 11.4 mA > Ith. 

4. Results and Discussion 
Figures 2(c)-(e) describes the error at the output of 

the optical ReLU functions in reference to the output of 
an all-digital ReLU implementation. Figure 2(c) reports 
the normalized optical signal for all 150 Iris flower 
samples after ReLU operation with the CML+IL (●). 
Deriving from the three classes of Iris flowers (setosa, 
virginica, versicolor), the output of node 0 at the 2nd 
layer after ReLU stands in good agreement with the all-
digital NN output (○). This is also evidenced by the very 
similar eye diagrams (i, ii) at the corresponding output. 
On the contrary in Fig. 2(d), a ReLU operation with the 
DML (▲) introduces large errors, especially towards 
performing the required rectification. This appears as 
surprising at first, considering the ideal L-I function of 
the DML; however, this large error is explained by the 
introduction of gain switching artifacts introduced when 
a sub-threshold bias of 5.5 mA is applied as required to 
perform rectification, as it is seen in the respective eye 
diagram (iii). Mitigating these artifacts through a sub-
optimal bias current of 11.2 mA towards to the linear L-I 
regime results in the large error, as it can be noticed 

from the unrectified eye diagram (iv). This renders the 
DML as unsuitable.  This result is further emphasized in 
the error histogram presented in Fig. 2(e), where the 
error ε, is defined as the absolute difference between the 
normalized optical output and all-digital NN. For optical 
frequency coding (blue), this error is mostly populated 
within a range of ε < 0.15. The DML-based ReLU (red) 
yields an error range 0 < ε < 0.7. 

We further calculated the accuracy of our Iris flower 
classification by propagating forwardly the optical 
measurement data from the node 0 of the 2nd layer to the 
output layer. We achieve an accuracy of 90% and 62% 
when using the CML+IL and the DML as optical ReLU, 
respectively. This stands in comparison with a 93% 
accuracy of an all-digital NN and confirms that the 
optical ReLU function introduces a small 3% error for 
the application while operating at a 1 Gb/s input rate.  
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Fig. 2. (a) Experimental setup to evaluate the optical ReLU function. (b) Signal spectra of CML with (green) and without IL (red), including the 

transmission T(λ) of the IL (blue). (c) Normalized output after ReLU operation for the all-digital NN (green) and for including the optical ReLU 

based on (c) CML+IL (blue) and (d) DML (red). (e) Resulting error histogram for both optical ReLU functions: CML+IL (blue) and DML (red).  

 


