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Abstract: We demonstrate a photonic rectified linear unit (ReLU) function accomplished through frequency-
coded neural signals. We show operation of an optical neuron with weighted sum and ReLU activation to 
perform with a 1% penalty in accuracy.    

 

1. Introduction 

Brain-inspired computing has become a focus of interest 
as a new paradigm in information processing. It is 
triggered by the bottleneck of the von-Neumann 
computing architecture in latency and bandwidth-
distance trade-off [1]. Photonics is considered as a 
foreground to implement the parallelism of neural 
networks (NN) while accomplishing high speed at low 
power. This positions neuromorphic photonics as a next 
milestone to beat the barrier inherent to digital electronic 
computing. The corresponding NN model includes two 
main building blocks: a weighting scheme based on a 
multiply-accumulate operation, followed by an 
activation function. The need of optical synaptic 
receptor that mimics the linear operation in NNs has 
been addressed via Mach-Zehnder interferometers 
(MZI) [2], broadcast-and-weight network using micro-
ring resonators (MRR) [3] and frequency coded 
synapses in combination with colorless demodulation 
and detection [4]. The linearity of optics renders the 
practical realization of an analogue weighted sum as a 
feasible task. On the contrary, it is not trivial to realize a 
nonlinear activation function in the optical domain. 
Rectified linear unit (ReLU), sigmoid, hyperbolic 
tangent and exponential linear unit are examples of 
activation functions; each of them having advantages for 
distinct applications. Some of these functions have been 
accomplished optically via SOA-MZI [5] and EAM [6]. 
 In this work, we experimentally demonstrate 

photonic ReLU activation via frequency coding of 
synaptic signals, as proposed conceptually recently [7], 
using a combination of chirped directly modulated laser 
(CML) and an optical interleaver (IL). We show that the 
inclusion of the proposed ReLU function in an optical 
neuron allows to set the polarity of its synaptic weights, 
thus contributing to simplified optical neural network 
(ONN) implementations. Our experiment proves that 
even without adaptation of the NN training to the 
specifics of the optical layer, a small penalty of only 1-
3% applies in terms of NN accuracy when integrating 
the proposed ReLU and the entire optical neuron. This 
relates to an all-digital NN (DNN) performing Iris 
flower classification at an inherent accuracy of 93%.  

2.  Photonic ReLU through Synaptic FM Coding 

As a first step we investigate the implementation of a 
photonic ReLU function for two schemes (Fig. 1b/c): (i) 
an IL as optical frequency demodulator with a linear 
transmission slope, which, together with the natural 
noise floor n of the receiver, resembles the ReLU 
function, and (ii) a DML that offers its linear light-
current (L-I) characteristic as electro-optic ReLU. The 
lower part (Ψ) of Fig. 1d shows the experimental setup 
dedicated to the evaluation of these photonic ReLU 
functions. The accuracy of the stand-alone ReLU 
embedded in the DNN has been assessed in the context 
of the Iris flower classification challenge, for which a set 
of 150 flowers is to be attributed to three classes of Iris 
flowers (setosa, versicolor and virginica). Each sample 

 
Fig. 1. (a) MLP-based neural network architecture. (b) ReLU activation units performed by (i) an optical interleaver and (ii) a DML with (c) their 
corresponding activation functions. (d) Experimental setup to evaluate the photonic ReLU (Ψ) and a neuron of an optical neural network (Ω). 



of flower has four features, comprising of sepal (length 
and width) and petal (length and width). In our DNN, 
we use the multilayer perceptron (MLP) architecture 
shown in Fig. 1a. The input layer has four nodes, each 
(xi) represents one feature of the flower. The value of 
nodes in the following layers are determined from the 
weighted sum of the prior layer (Σ) and biased by b, 
followed by an activation function (ƒ). Finally, a 
Softmax function (zi) is applied at the output layer to 
generate the prediction probabilities. The MLP network 
has been trained offline and the “ideal” DNN will be our 
benchmark to evaluate the photonic ReLU and the 
optical NN performance. 

For this purpose, we send the weighted sum data 
Σwisi(t) from the node 0, layer 2 of the DNN (without 
being processed by activation function) to the optical 
activation unit using an arbitrary waveform generator 
(AWG) at 1 Gb/s rate. In the proposed ReLU 
implementation, the AWG drives a 10-GHz butterfly 
CML as a synaptic emitter operating at 1600.6 nm. The 
integrated chirp-conversion filter of the CML has been 
tuned to a neutral spectral position, resulting in a purely 
frequency modulated (FM) weighted sum signal ΣFM(t) 
with an intensity extinction ratio of only 0.3 dB (Λ). 
This FM signal is subsequently rectified by the 
activation function via an optical 25/50 GHz IL. Figure 
2a depicts the optical spectra of CML before (α) and 
after tuning the wavelength of CML with respect to the 
IL slope (β), together with the transmission of the even 
IL channel (γ). The output of the IL-based ReLU, which 
has been demodulated from a frequency- to an intensity-
coded signal, is then received by a PIN receiver and 
digitized by a real-time oscilloscope. For performance 
comparison, we replace the combination of CML+IL 
with a 10-GHz butterfly DML operating at 1554 nm and 
having a threshold current Ith of 6.5 mA. 

Figure 2c describes the normalized optical signal 
after ReLU function with CML+IL (●) for all 150 Iris 
data samples, which stand in good agreement with the 
all-digital NN (○). This is confirmed by the comparable 
eye diagrams after the ReLU (i,ii). Integrating the 

photonic ReLU function in the NN yields an accuracy of 
90%, which is 3% lower than that of the all-digital NN. 
This proves the correct operation of the proposed neural 
activation unit. 

In contrast, ReLU operation with the DML (▲) 
introduces a larger error (Fig. 2d) when applying a 
sufficiently low bias current to rectify the RF signal. The 
source of this error can be understood from the eye 
diagram (iii) where gain switching is introduced when 
the sub-threshold bias of 5.5 mA < Ith is applied (Fig. 2b, 
δ). However, increasing the bias to 11.2 mA > Ith to 
suppress this effect (Fig. 2b, ζ) operates the ReLU in the 
linear L-I region and does not lead to the required 
rectification (iv). These results are further summarized 
in an error histogram (Fig. 2e), where the error ɛ is 
defined as an absolute difference between normalized 
optical signal and the all-digital NN. The error with 
CML+IL (κ) is clearly lower (average error ε̅ = 0.14, 3σ 
= 0.36) compared to DML (ς). Therefore, we will rely 
on the CML+IL based ReLU scheme for the further 
investigation of a functionally-complete optical neuron. 

3.  Optical Neuron with Weighting and Activation 

In a second step, the upper experimental setup (Ω) in 
Fig. 1d implements an optical neuron with four synaptic 
inputs, realizing an optically weighted sum and the 
ReLU activation. We used 4 CMLs of which two 
operate in the C-band (1535 nm) and two in the L-band 
(1600 nm). All of the CMLs share the same IL to ensure 
a cost-optimized layout of multiple neurons within a NN 
layer. In this experiment, the C-band CMLs represent 
the emitters of two nodes in layer 2 of the NN (A and B 
in Fig. 1a) and the respective PIN receiver in the C-band 
yields the output of the neuron of node 2, layer 3 (E). In 
the same manner, the L-band CMLs are used for the 
neuron at node 0, layer 3 (D). 

We send the neural data si(t) of the corresponding 
neurons in layer 2 at 1 Gb/s to the CMLs. Based on the 
NN training, the two neurons (A and B) have alternating 
signs (w+,w-). The FM signals are aligned to the 

 
Fig. 2. (a) Optical spectra of CML before (α) and after (β) IL with transmission γ. (b) DML spectrum above (ζ) and below (δ) Ith, indicating gain 
switching artifacts. (c) Normalized ReLU output for all-digital NN (○) and including an optical ReLU using a CML+IL (●) and (d) a DML (▲). 
(e) Corresponding error histogram for CML+IL (κ) and DML (ς) based ReLU. 



respective positive/negative IL slopes, generating 
sgn(wi) accordingly. The required synaptic interconnect 
towards the even (+) and odd (–) input of the IL is 
fanned-in through C/L and 1×2 splitters to allow various 
weight combinations for the shared IL. The weight 
magnitude |wi| is set through frequency-agnostic variable 
optical attenuators (VOA) at the CML outputs. Figure 3a 
shows the optical spectrum of all four CMLs after the 
shared IL, with insets indicating the allocation to 
different IL slopes. The sum of the synaptic signals in 
each waveband is then performed by virtue of the 
broadband IL and PIN receiver responses. After 
digitization, we again determine the accuracy of the 
hybrid NN. 

The spectral processing introduced by the ReLU on a 
C-band FM signal, generated through a CML with a 
chirp parameter of 2.9, is shown in Figs. 3b/c for 
negative/positive polarity. The RF spectra are reported 
for heterodyning the IL inputs (σ, χ) and outputs (ρ, φ) to 
an intermediate frequency of ~6.6 GHz, as indicated 
through the CW beat notes (π, τ) of CML and local 
oscillator. In Fig. 3b, the higher frequencies of the upper 
FM sideband (ρ) are suppressed by the falling slope of 
the IL, introducing the desired rectification effect. 
Similarly, higher frequencies of the lower FM sideband 
(φ) are suppressed by the rising IL slope for the sign-
inverted ReLU in Fig. 3c. 

Figure 3d reports the error histogram when 
incorporating the functionally-complete optical neuron 
in the NN while sharing the ReLU with a second neuron. 
Both, node 0 (μ, L-band) and node 2 (υ, C-band) in layer 
3, have an average error ε̅ as low as 0.1. We further 
compute the accuracy for Iris flower classification by 
propagating forwardly the optical measurement data in 
the NN. Figure 3e reports the NN accuracy as a function 

of ε ̅for the experimental data and under artificial signal 
degradation due to AWGN. We achieve an accuracy of 
92% in the experiment for both neurons at 1 Gb/s. This 
result stands close to the 93% based on a fully-digital 
NN. As expected, the accuracy reduces when ε ̅
increases. Particularly, the accuracy drops faster for 
node 2 (▲), while node 0 (●) shows just a slight 
degradation. This is due to the peculiar noise tolerance 
of the particular neurons. Finally, Fig. 3f shows how ε ̅
elevates for higher data rates of up to 5 Gb/s. Results are 
shown for the noise-sensitive node 2 at layer 3. We see a 
slight increase in ε̅ from 0.10 to 0.12, which relates to a 
80% NN accuracy at 5 Gb/s. 

4.  Conclusion 

We have demonstrated an optical frequency-coded 
ReLU function in combination with a chirped laser and 
an optical interleaver. We have demonstrated operation 
at a marginal error when integrating the ReLU activation 
in a hybrid digital / optical NN implementation, 
amounting to a small 1% penalty in accuracy. We have 
further proven that the choice of sign for the synaptic 
weighting process can be accommodated with this ReLU 
function. 
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